Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The Casimir-Polder interaction between an anisotropic particle and a surface is orientation dependent. We study novel orientational effects that arise due to curvature of the surface for distances much smaller than the radii of curvature by employing a derivative expansion. For nanoparticles we derive a general short distance expansion of the interaction potential in terms of their dipolar polarizabilities. Explicit results are presented for nano-spheroids made of SiO 2 and gold, both at zero and at finite temperatures. The preferred orientation of the particle is strongly dependent on curvature, temperature, as well as material properties.
منابع مشابه
Intermolecular Casimir-Polder forces in water and near surfaces.
The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO(2) and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contrib...
متن کاملVan der Waals versus optical interaction between metal nanoparticles.
We derive closed expressions for the Casimir-Polder potential between metal nanoparticles as well as for the light-induced interaction owing to the gradient force. Within the validity of the dipole approximation, the maximum interaction energy turns out to be proportional to the plasma frequency, and it is comparable to the thermal energy at T=300 K. On the other hand, the light-induced interac...
متن کاملLateral Casimir-Polder force with corrugated surfaces
We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two common...
متن کاملComment on "Contribution of drifting carriers to the Casimir-Lifshitz and Casimir-Polder interactions with semiconductor materials".
We develop a theory for Casimir-Lifshitz and Casimir-Polder interactions with semiconductor or insulator surfaces that takes into account charge drift in the bulk material through use of the classical Boltzmann equation. We derive frequency-dependent dispersion relations that give the usual Lifshitz results for dielectrics as a limiting case and, in the quasistatic limit, coincide with those re...
متن کاملBorn expansion of the Casimir-Polder interaction of a ground-state atom with dielectric bodies
Within leading-order perturbation theory, the Casimir-Polder potential of a ground-state atom placed within an arbitrary arrangement of dispersing and absorbing linear bodies can be expressed in terms of the polarizability of the atom and the scattering Green tensor of the body-assisted electromagnetic field. Based on a Born series of the Green tensor, a systematic expansion of the Casimir-Pold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015